Inversion of the spherical Radon transform on spheres through the origin using the regular Radon transform
نویسندگان
چکیده
منابع مشابه
Radon Transform Inversion using the Shearlet Representation
The inversion of the Radon transform is a classical ill-posed inverse problem where some method of regularization must be applied in order to accurately recover the objects of interest from the observable data. A well-known consequence of the traditional regularization methods is that some important features to be recovered are lost, as evident in imaging applications where the regularized reco...
متن کاملExplicit inversion formulae for the spherical mean Radon transform
Abstract We derive explicit formulae for the reconstruction of a function from its integrals over a family of spheres, or for the inversion of the spherical mean Radon transform. Such formulae are important for problems of thermoand photo-acoustic tomography. A closed-form inversion formula of a filtrationbackprojection type is found for the case when the centres of the integration spheres lie ...
متن کاملInversion algorithms for the spherical Radon and cosine transform
We consider two integral transforms which are frequently used in integral geometry and related fields, namely the cosine and the spherical Radon transform. Fast algorithms are developed which invert the respective transforms in a numerically stable way. So far, only theoretical inversion formulas or algorithms for atomic measures have been derived, which are not so important for applications. W...
متن کاملThe Radon Transform on Z *
where S + x denotes the setf-s + x i s e S ) . Thus, the Radon transform can be thought of as a way of replacing/by a "smeared out" version of /. This form of the transform represents a simplified model of the kind of averaging which occurs in certain applied settings, such as various types of tomography and recent statistical averaging techniques. A fundamental question which arises in connect...
متن کاملThe Radon Transform on Zn
The Radon transform on Zn averages a function over its values on a translate of a fixed subset S in Zn. We discuss invertibility conditions and computer inverse formulas based on the Moore-Penrose inverse and on linear algorithms. We expect the results to be of use in directional and toroidal time series.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications on Pure and Applied Analysis
سال: 2016
ISSN: 1534-0392
DOI: 10.3934/cpaa.2016.15.1029